Механизм Вселенной
Часть 29 из 42 Информация о книге
Давайте проясним. Ранее мы узнали, что работу совершают, применяя силу, чтобы, например, сдвинуть объект на некое расстояние. В таком случае гравитация — сила, двигающая объект таким образом, чтобы он упал на землю. 33 Работу рассчитывают как расстояние, на которое падает тело под воздействием силы тяжести, тогда как тепло связано с изменением температуры определенного объема воды. 34 Во время своего медового месяца Джоуль предположительно попытался измерить увеличение температуры воды внизу водопада. Действительно, поскольку вода в основании из-за падения потеряла (гравитационную) потенциальную энергию, за счет сохранения энергии вода оказывается теплее. 35 Будьте благодарны, что природа установила такую высокую цену за механический эквивалент тепла. Если бы она была «слишком низкой», мы бы производили гигантское количество тепла во время таких повседневных действий, как ходьба, где тепло выделялось бы, например, во время трения между вами и поверхностью земли. 36 В дополнение к этому пункту Эйнштейн научил нас, что E = mc2, то есть объект обладает энергией просто потому, что у него есть масса, m. Это уравнение часто понимают неправильно. Целиком мы пишем E = mc2 = m0c2 + Eк, где m0 — «масса покоя», c — скорость света, а Eк — кинетическая энергия. 37 Даже сегодня все формы тепловых двигателей теряют значительную часть тепла. 38 У проверяющих из патентной комиссии есть научные степени в области техники, а у некоторых — даже степень кандидата наук. 39 Конечно, не все тепловые двигатели работают таким образом. Очень простой пример теплового двигателя — «пьющая птичка». Когда птица опускает свой клюв в стакан воды перед ней, она захватывает воду клювом и возвращается в вертикальное положение. С этого момента вода начинает испаряться с кончика ее клюва, охлаждая его — этот процесс известен как испаряющее охлаждение. В результате возникает разница температур: верхняя половина птицы становится более холодной (холодильник), чем нижняя (нагреватель). Из-за разницы температур жидкость внутри птицы поднимается вверх, пока птица снова не наклонится к стакану воды, чтобы вновь сделать «глоток», и процесс начинается заново. Кроме того, перепад температур также приводит к перепаду давления (пусть и незначительному) внутри птицы. Жидкость (рабочее тело) в данном процессе играет важную роль. Она очень летучая, то есть при комнатной температуре значительная часть ее молекул находится в агрегатном состоянии пара, а некоторая часть — в жидком. В целом это относится ко всем жидкостям: некоторые их молекулы находятся в жидком состоянии, а другие — в газообразном, что приводит к росту давления пара жидкости. Однако у летучих жидкостей, в отличие от менее летучих, при равных температурах больше молекул находится в агрегатном состоянии пара. Это отражение притяжения молекул жидкости; чем оно сильнее, тем больше молекул остается в жидком состоянии и меньше — в состоянии пара, и наоборот. Это ключевой момент, потому что более летучая жидкость будет реагировать на разницу давлений гораздо сильнее, чем менее летучая, как и летучая жидкость внутри пьющей птицы, где больше молекул переходит из жидкого состояния в парообразное. Именно эти испарения, наряду с небольшим капиллярным эффектом, заставляют жидкость подниматься. 40 За исключением систем и процессов, находящихся в равновесии, большинство систем и процессов, которые встречаются в природе, являются необратимыми. Такие системы равновесия включают в себя те, что подвергаются фазовому переходу. Например, когда вода приближается к точке заморозки/таяния или когда она кипит/конденсируется, система находится в равновесии и поэтому является обратимой. Другие примеры — химические реакции, находящиеся в состоянии равновесия. Это означает, что протекающие прямо и обратные реакции происходят одновременно. Однако это не означает, что они происходят на одинаковом уровне; на самом деле, обычно нет. Это последнее соображение относится к химической кинетике реакции, а не ее термодинамике. 41 Попробуйте представить себе стакан, который упал с лавки и разбился на множество осколков. Весьма наивно полагать, что, тщательно склеив все части, мы сможем вернуть стакан в прежнее состояние. Конечно же, у нас ничего не получится; в лучшем случае мы просто немного приблизимся к тому, что было раньше. 42 Энергия для выполнения работы возникает из потенциальной энергии за счет разности высот. 43 Некоторая потеря потенциальной энергии с эффективностью работы происходит из-за нагревания, возникающего, когда вода ударяется о водяное колесо. 44 Другой пример — кондиционер. 45 Возможно, эту задачу можно было бы разрешить так. Двигатель 1 может выполнять только работу, необходимую для работы двигателя 2 в качестве теплового насоса, и ничего более. В итоге тепло поступает из нагревателя и затем возвращается в него. На самом деле мы можем просто исключить из схемы холодильник. Что может пойти не так? Ну, теперь у нас есть схема, где на одной и той же температуре Tн тепло перемещается между тепловым двигателем и тепловым насосом. Другими словами, мы создали механизм, в котором система, находясь в тепловом равновесии, все еще может передавать тепловой поток. Однако, как мы знаем, тепло не может перемещаться без перепада температур, и если система пребывает в тепловом равновесии, то тепло и вовсе не может перемещаться. Кроме того, такое устройство нарушило бы второе начало (позже мы разберем это подробнее); это был бы вечный двигатель второго рода. Таким образом, мы вынуждены отказаться от данного варианта.